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Abstract

With the deep learning era, synthetic content generation
has become increasingly easier and popular. Especially for
the case of deepfakes, this proliferation causes potentially
harmful uses, from fake profiles swaying political opinions
to deepfake pornography of celebrities. Similarly, deepfake
detection methods are also rising to counter these malicious
uses. We would like to contribute to this arms race by intro-
ducing adversarial attacks on deepfake detectors to assess
their capabilities and limitations. We design our approach
as a score-based black-box attack, developing a new loss
function and utilizing a light-weight neural network. We
evaluate our approach on five different attack and detector
models, performing attacks both with the same model and
across models to validate its generalizability. We report the
reconstruction accuracies of perturbed fake samples, in ad-
dition to the misclassification accuracies under stress cases
with postprocessing operations. We decrease the fake de-
tection accuracy by over 80% using only perturbed fakes,
and extend this up to 93% with postprocessing operations.

1. Introduction
In recent years, generative models, especially in the im-

age domain (e.g., StyleGAN versions [32, 33]), have sim-
plified the creation of realistic faces of people who do not
exist [54]. These synthetic faces are frequently used when
creating bots or deceptive media designed to be indistin-
guishable from human beings, especially as profile pictures
on social media platforms. Such fake content is called deep-
fakes, which are fake images, videos, or audio designed to
animate existing actors to perform non-existing actions or to
generate completely synthetic content around non-existing
actors [3]. Usually, the process involves seamlessly stitch-
ing a source face over a target face, where the generated im-

age looks indistinguishable from a real face to human eye.
Malicious actors use deepfakes for pornography [56],

targeting celebrities and public figures [11]. Political cam-
paigns also exploit fake content in order to sway the views
of large portions of the voting population. These efforts,
when done successfully, manipulate elections [2,27]. Politi-
cians are often the subject of deepfake videos produced to
tarnish their reputation or cause misinformation [53].

Parallel to deepfake generation, machine learning meth-
ods are used also for detecting synthetic face images [44].
These cases include searching for forensic traces left in
deepfake images during image generation process [23], de-
tecting deepfakes using CNNs to examine artifacts from
affine face warping [36], and extracting, segmenting, and
classifying facial regions using autoencoders [43]. Al-
though these approaches achieve high accuracies, machine
learning methods need more modification as deepfakes get
more accurate and realistic.

In contrast to pure learning-based detectors, another
branch of deepfake detection covers biological markers.
Yang et al. [59] report high accuracy rates analyzing lip fea-
tures and movements to classify a synthesized video. Demir
and Ciftci [17] propose a deepfake detection method that
analyzes eye and gaze features to ascertain authenticity.

As deepfakes are developed to fool humans, adversarial
attacks on generative models are developed to fool the de-
tection systems by intentionally altering the content [57].
Recent studies have shown that many state-of-the-art de-
tection methods are significantly prone to these adversarial
attacks [10, 19, 20, 42]. Even simple postprocessing opera-
tions, such as adding a Gaussian Blur, are cheap and effec-
tive tools against current deepfake detection methods [21].

In this paper, our main motivation is set as deceiving
deepfake detection algorithms to classify fake images are
real. Adversarial attacks in deepfakes domain tend to con-
fuse detection systems by establishing classification of all
images as fake [29] (as opposed to only fake images to be



classified as fake), however it is harder to change the clas-
sification of fake images to reals, especially for biological
detectors. In this work, we build a generative network based
on a UNet-like [48] encoder decoder architecture, which
takes a GAN-generated fake image along with a deepfake
detector in a black box setting, having access to only the
predicted fakery confidence of a given image. Our gener-
ator network outputs an adversarial fake image that makes
any fake image appear as real for the given black box de-
tector model. We validate our approach by training five dif-
ferent attack and detector models: DenseNet [28], Incep-
tionResNetV2 [50], InceptionV3 [51], ResNet152V2 [26],
and XceptionNet [14]. Our approach confuses every tested
detector by more than 80% accuracy in classifying fakes.
We perform and document cross-model attacks by pairwise
attacker-detector experiments of the mentioned models as
an adversary to each other. In addition, we also evaluate
the effects of postprocessing (such as blurring or resolution
change), in order to evidence that simple models provide
powerful modifications as an adversary to fake detection.

2. Related Work

2.1. Deepfake Detection Methods

The growth of generative models triggered the impor-
tance of deepfake detection methods. Early models com-
pared face boundary artifacts [36] as state-of-the-art face-
swap algorithms only manipulate the inner region of the
face, while the outer region is left relatively untouched. For
example, Nirkin et al. [45] assert that the inner region of
the face (eyes, nose, mouth, facial structure) is very simple
in humans, and therefore is easy to modify in a way that
still appears realistic. On the other hand, the outer regions
of the face (especially the ears and hair) posses much more
variation and are therefore more difficult to reconstruct in a
convincing way. Another group, Matern et al. [39], claims
that the features of the inner face, while easier to manipulate
than the outer regions, still leave behind enough artifacts to
be distinguishable from real images by a computer. For ex-
ample, synthetic images frequently suffer from symmetry
artifacts, i.e., two vastly different eye colors can co-exist in
a face. In reality, this only occurs in about 1% of the popu-
lation, and often does not affect the entire eye [40]. Matern
et al. also note that the areas under the nose and eyes are
usually not illuminated properly in deepfakes.

Apart from the structural ways of detecting deep-
fakes, pure learning-based methods are proposed to uti-
lize the residue of generators. These methods include
ResNet [34], InceptionNet [34], XceptionNet [49], com-
pact networks with inception modules [4], shallow net-
works [52], RNNs [24], two stream networks [60], and en-
semble networks [8]. These complex networks are limited
to specific generators and their generalizability is limited.

Finally, signals from image space [23], frequency
space [55], and biometric space [16] are also demonstrated
to be useful in deepfake detection. Our approach primarily
focuses on failing pure learning-based detectors, however
extensions can be developed for other approaches too.

2.2. Adversarial Attacks

Adversarial attacks are generally broken down into two
categories: white box attacks, and black box attacks [57].
In a white box attack, the attacker has access to the model’s
parameters. In black box attacks, the system is unknown.
For the second case, images are generated with the expecta-
tion that they transfer effectively to the model in question.

2.2.1 White-Box Attacks

Gradient-based methods are generally the most effective
method to-date for white-box attacks [18]. The attacker
finds the gradient of the loss function for the input image
and modifies it along the same direction. These can be fur-
ther broken down into two categories: one-shot attacks [13]
and iterative attacks [6], depending on how many steps are
taken in the direction of the gradient.

The Fast Gradient Sign Method (FGSM) [22] is a fre-
quently used one-shot approach that is computationally in-
expensive and has a high amount of success for detecting
deepfakes. It works by adding noise in the same direction
as the gradient of the cost function of a given dataset. Essen-
tially, it pushes the adversarial sample closer to the classi-
fied distributions. Gandhi et al. [20] are able to achieve 95%
detection on unperturbed deepfakes, but using the FGSM,
they are able to create perturbed images that were only cor-
rectly classified 27% of the time. Nasr et al. [41] show
that many different architectures are highly susceptible to
FGSM white-box attacks, with similar attack accuracies as
black-box attacks and other types of white-box attacks.

Projected gradient descent (PGD) is another common
white-box attack method. Currently, it is considered as
one of the standard methods for large-scale constrained op-
timization [31]. [47], also analyzes the gradients to deter-
mine perturbations. Madry et al. [38] produce results com-
paring how effectively models can defend against attacks
using different training methods. They show that training
only with FGSM is not necessarily reliable, while training
against a multi-step PGD method leads to increased resis-
tance against attacks due to its robustness.

2.2.2 Black-Box Attacks

Since black-box attacks have less input available than
white-box attacks, detection methods are generally compu-
tationally expensive and require more resources [30]. As a
result, the success of black-box methods is frequently mea-
sured in both accuracy and minimum required resources.



Black-box attacks are generally split into three main cat-
egories: transfer-based attacks, score-based attacks, and
decision-based attacks. Transfer-based attacks work by cre-
ating a ”substitute model” which is as close to the expected
target model as possible. Then adversarial examples are
generated against this substitute model. Papernot et al. [46]
create an adversarial example trained on a surrogate model
which can mislead the target model. In DeepMisR [7], hav-
ing access to the training data, authors use adversarial ex-
amples generated against the substitute model by a white-
box attack to deceive a target model using transferability of
the adversarial example. In score-based attacks, the only
accessible knowledge cover input images for the attacked
model and the relative confidence scores as output. The at-
tack can still attempt to estimate the gradient through the
information available from the model. Gradient estimation
is a common score-based technique used for black-box at-
tacks. Chen et al. [12] propose a method referred to as Ze-
roth Order Optimization (ZOO) to perform gradient estima-
tion. The authors observed that their method is as effec-
tive at detecting deepfakes as most white-box attack meth-
ods. Decision-based attacks are the most restrictive type of
attack with respect to how much information is available.
The attacker is only able to access discrete hard-label pre-
dictions about the model. While this is the most restrictive
type of a black-box attack, it is also the most representa-
tive of real-world scenarios where statistics like confidence
intervals are rarely available to the attack model. In [9],
starting with large adversarial perturbations and iteratively
reducing them, Brendel et al. are able to generate smaller
adversarial perturbations. The perturbations stayed within
the adversarial region while neared the decision boundary.
Liu et al [37], proposed a geometry-inspired decision-based
attack to reduce the number of queries by constraining ad-
versarial perturbations to low frequency subspace in order
to fool commercial image recognition systems.

For our system, we assume that the only accessible
knowledge is the probability that an image is real or fake,
which corresponds to the score-based black-box attack
model. This is inline with the real life scenario; many online
detectors used by companies will not output the classifica-
tion result, but only the class probabilities.

3. System Overview
We design our attack model based on detection accura-

cies of different deepfake detectors, between each pair of
attacker and detector models. In order to further show that
simple and less computationally expensive methods can still
be fairly effective at detecting synthetically generated im-
ages, we fortify the analysis with the detection results with
simple image modifications like blurring and resizing.

When it comes to traditional image authenticity classi-
fication networks, outputs tend to be binary; either real or

Figure 1. System Overview. Fake samples from the dataset are
trained in an encoder-decoder architecture with perturbation and
reconstruction losses.

fake. These binary outputs range from 0 to 1 depending
on the authenticity of the image. As synthetic images can
be completely synthetic based on a distribution or partially
modified as in reanimation cases, the detector model needs
to give a number representing how real it thinks the image
is. One of the common ways to provide this information is
to use a floating point output between 0 to 1, that contains
the authenticity percentage of the image where 1 means
100% real and 0 means 100% fake. An example of this
percentage-based detection model can be found in commer-
cially available deepfake detectors [1]. In our attack model,
we assume we have a detector model as a blackbox that
is trained to identify synthetic fake images and we do not
have any information about it. We can only interact with the
model by input output pairs, where the output represents the
relative authenticity value reported by the specific detector.

In our generative model, we employ a UNet-style [48]
encoder-decoder based generative adverserial network to re-
fine fake images by introducing perturbations to fool detec-
tor models into classifying them as real. Figure 1 shows a
general overview of our adversarial generation. The reason
we choose UNet as a base is for its ability to keep the struc-
tural integrity of an image without much effort, thanks to
its design to fuse layer information with its spatially com-
plementing layers. Instead of targeting the detector models
with a model-specific noise that can be added to every im-
age, we follow the path of predicting image-specific noise
with this adversarial training process. This also enables ad-
versarial images that fail one detector model to be able to
fool others too. Therefore, our model takes a synthetic fake
image and modifies it in a way that minimizes the recon-
struction error between the modified fake image and the
provided fake image, while maximizing the detection error.



Our encoder decoder architecture has three parts: en-
coder, decoder, and ending. The encoder and the corre-
sponding decoder contain four CNN segments (eight in to-
tal) where each segment consists of two convolutional lay-
ers with ReLU activations [5], followed by max pooling and
upsampling on the encoder part, convolution with a ReLU
activation, and ends with concatenation of layers on the de-
coder part. In our concatenation layer in the decoder seg-
ment, we combine information from the second convolu-
tional layer of each corresponding encoder segment. After
our encoder and decoder, we add two more convolutional
layers with ReLU activations and one convolutional layer
with sigmoid activation. We use Kaiming He initializa-
tion [25] for every layer of our generator network.

During training, our loss function has two components.
First, we optimize for the mean square error between the
perturbed fake image and the original fake image to ensure
our generated image looks similar to the fake image. Sec-
ond, we optimize for the prediction from the target detector
model. We notice that the contributions of loss terms are not
balanced and the prediction loss ends up dominating the re-
construction loss and creates visible changes. We balance it
with an empirically determined weight of 0.001 to keep the
image similar to the unperturbed fake image. This results in
our final loss to have the following form:

L = MSE(I,G(I)) + 0.001 ∗D(G(I)) (1)

where I is the provided fake image that will be modified
to pass as real, G(I) is the generated image by our network
and D(G(I)) is the deepfake detector’s prediction response.

4. Results
Both our detector models and our framework is imple-

mented using keras [15] library. The training for the ad-
versarial generation is done on an NVIDIA 1060GTX for
200 epochs, where Adam [35] is chosen as the optimizer
with a learning rate of 1e-4. Our dataset contains 140,000
faces [58] with 70,000 reals / 70,000 fakes generated by
StyleGAN [32], of which we use 60,000 real / 60,000 fake
images for training detector models and 10,000 real / 10,000
fake images of diverse people for testing our generator.

Model Fake Images Real Images
DenseNet [28] 0.6% 99.5%
Inc.ResNet [34] 0.6% 99.7%
InceptionV3 [51] 0.8% 99.8%
ResNet152V2 [26] 2.1% 99.7%
XceptionNet [14] 0.5% 99.7%

Table 1. Real detection accuracies of unmodified fake and real
images as the baseline for each deepfake detector.

We document the initial real detection accuracies of five
detectors on our dataset in Table 1. In other words, more

than 99% of real images are detected as real and almost
none of the fake images are detected as real. This exercise
verifies that selected detectors are suitable by working al-
most perfectly on our dataset for deepfake detection.

Model [28] [34] [51] [26] [14]
DenseNet [28] 79.9 72.0 78.6 80.4 64.4
Inc.ResNet [34] 76.7 83.6 83.8 75.4 72.5
InceptionV3 [51] 71.4 81.2 87.5 71.1 73.5
ResNet [26] 77.2 73.3 73.1 84.9 63.9
XceptionNet [14] 82.5 83.2 87.5 82.7 80.9

Table 2. Real detection accuracies of perturbed fakes demon-
strating adversarial misclassification both per-model (diagonal)
and cross-model (others).

To measure the success of our adversarial samples, we
run our framework on the aforementioned dataset, and do
the same evaluation on the perturbed fake images. As our
main motivation is to confuse detectors to classify fakes
as reals, we document only real classification accuracy on
fake samples (Tab 2). The accuracies in bold indicate the
main accuracies when the training and testing models are
the same, for example, DenseNet fake detection accuracy is
reduced from 99.4% to 20.1%, comparing the first cells
of Table 1 and 2. All detector models show high accura-
cies (approximately or greater than 80%) of being able to
misclassify the adversarial images.

Figure 2. Sample fake images with adversarial perturbations gen-
erated to target different models.

In addition, we show example adversarial fake images
created by our algorithm from the fake samples in the
database per different detectors in Figure 2, supporting that
there is no significant visual artifacts introduced by the ad-
versarial training process.

4.1. Effects of Post-processing

We explore the effects of blurring and resizing operations
on the adversarially created samples. To have a fair compar-
ison; we first apply Gaussian blur with 3x3, 5x5, and 7x7
kernels, and resizing to +-10% of the original size; to the un-
modified real and fake samples in the dataset 3. We observe



Real Fake

3x3B 5x5B 7x7B R90 R110 3x3B 5x5B 7x7B R90 R110

DenseNet [28] 99.6% 99.7% 99.7% 99.7% 99.7% 1.2% 2.0% 4.4% 1.7% 1.1%
InceptionResNet [34] 99.8% 99.9% 99.9% 99.7% 99.7% 1.4% 2.8% 10.1% 1.6% 1.1%
InceptionV3 [51] 99.9% 99.9% 99.9% 99.9% 99.9% 1.7% 3.7% 12.3% 2.2% 1.6%
ResNet152V2 [26] 99.7% 99.8% 99.9% 99.8% 99.7% 2.9% 4.3% 8.1% 3.5% 2.4%
XceptionNet [14] 99.7% 99.7% 99.8% 99.7% 99.7% 0.8% 1.3% 3.0% 1.3% 0.8%

Table 3. Effects of post processing for the real classification accuracies of the unmodified (or original) real and fake images. 3x3B, 5x5B,
and 7x7B correspond to Gaussian blur kernel sizes. R90 and R110 represent 10% down and upsampling of the image.

Real Fake

3x3B 5x5B 7x7B R90 R110 3x3B 5x5B 7x7B R90 R110

DenseNet [28] 94.7% 95.8% 97.1% 93.5% 93.2% 86.9% 89.0% 91.4% 85.5% 84.7%
InceptionResNet [34] 99.1% 99.6% 99.8% 98.3% 98.3% 86.5% 87.8% 90.4% 85.9% 85%
InceptionV3 [51] 99.4% 99.6% 99.8% 99.4% 99.3% 90.3% 91.3% 93.2% 90.0% 89.1%
ResNet152V2 [26] 95.5% 96.4% 97.6% 94.5% 94.4% 87.4% 88.7% 90.05% 86.1% 85.8%
XceptionNet [14] 94.7% 94.9% 95.4% 94.9% 94.2% 81.5% 82.8% 85.3% 83% 80.9%

Table 4. Effects of post processing for the real classification accuracies of the adversarial (or original) real and fake images. 3x3B, 5x5B,
and 7x7B correspond to Gaussian blur kernel sizes. R90 and R110 represent 10% down and upsampling of the image.

that the real classification accuracy does not drop signifi-
cantly compared to table 1, as the change is in the order of
1%. Next, we apply the same set of operations to the adver-
sarially perturbed fake images (Table 4). We note that the
misclassification increases even more than that of 2, con-
cluding that performing post processing operations quanti-
tatively lowers the correct classification accuracy on synthe-
sized fake images. Sample blurred images corresponding to
this experiment are shown in Figure 3.

Figure 3. Example images with Gaussian blur before being al-
tered for adversarial attacks.

4.2. Reconstruction Fidelity

Following our visual results, we also measure the recon-
struction quality of the adversarial samples to stay as loyal
as possible to the original fake images. Table 5 documents
average scores for various image metrics, for the adversarial
counterparts of all the images in the dataset. We conclude
that there is not too much noise introduced (low PSNR), the
reconstruction is accurate (low RMSE), and adversarial im-
ages are structurally similar to original fakes (high SSIM).

Model PSNR RMSE SSIM
DenseNet [28] 35.4007 4.3709 0.9495
InceptionResNet [34] 34.8324 4.6583 0.9487
InceptionV3 [51] 35.1660 4.4893 0.9484
ResNet152V2 [26] 35.3268 4.4004 0.9490
XceptionNet [14] 35.2031 4.4711 0.9482

Table 5. Image space metrics for fake images generated to target
different models, evaluated by noise, accuracy, and structure.

4.3. Cross-Model Attacks

Generalizability of adversarial attacks is one of the most
important features to make it adopted widely. In order to
assess that, we conduct a cross-model experiment where
our system is trained for a specific model and tested on an-
other model. Table 2 lists the results of the detector net-
works on our altered fake images along with cross-model



prediction results between detector models (accuracies on
non-diagonal cells). Similar to Section 4, the results in-
dicate the percentage of altered fake images classified as
real. We can securely conclude that even if the model is
trained for targeting a single detector model, it still works
for other never-before-seen models with only minimal accu-
racy drops. Moreover, the accuracy even improved for one
case; DenseNet detector model had 79.9% accuracy when
tested with the DenseNet attack model, but an 82.5% accu-
racy when tested with the XceptionNet attack model.

5. Conclusion

We present an adversarial generation framework for cre-
ating perturbed fake images to deceive deepfake detectors.
Our model uses a new loss function and utilizes a generic
UNet [48] model to create adversarial fakes. We compare
the detection accuracy of five deepfake detectors before and
after the adversarial attacks, perform cross-model attacks
for generalizability, measure the reconstruction quality for
image fidelity, and analyze the effects of post-processing
artifacts on the misclassification results. Ultimately, our re-
sults show that, training robust black-box models is highly
successful at creating adversarial images to trick the de-
tectors, and operations like resizing or blurring an image
(which are computationally much less expensive) still have
fairly successful outcomes on top of the adversarial gener-
ation. In future, we would like to extend our work to trick
other models such as biological and spatiotemporal detec-
tors. As those detectors depend on the preservation of au-
thentic information in real images (as opposed to current
detectors depending on artifacts of fake images), we would
like to solve this new challenge with additional loss terms
to fake the authenticity clues.
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